The type defect of a simplicial complex

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance of the barycentric subdivision of a simplicial complex

‎In this paper we prove that a simplicial complex is determined‎ ‎uniquely up to isomorphism by its barycentric subdivision as well as‎ ‎its comparability graph‎. ‎We also put together several algebraic‎, ‎combinatorial and topological invariants of simplicial complexes‎.

متن کامل

invariance of the barycentric subdivision of a simplicial complex

‎in this paper we prove that a simplicial complex is determined‎ ‎uniquely up to isomorphism by its barycentric subdivision as well as‎ ‎its comparability graph‎. ‎we also put together several algebraic‎, ‎combinatorial and topological invariants of simplicial complexes‎.

متن کامل

The Stirling Polynomial of a Simplicial Complex

We introduce a new encoding of the face numbers of a simplicial complex, its Stirling polynomial, that has a simple expression obtained by multiplying each face number with an appropriate generalized binomial coefficient. We prove that the face numbers of the barycentric subdivision of the free join of two CW -complexes may be found by multiplying the Stirling polynomials of the barycentric sub...

متن کامل

The k-fractal of a simplicial complex

The k-polynomial of a simplicial complex C is the function kC(x)= ∑ i¿1 fix i where fi is the number of i-faces in C. These k-polynomials are closed under composition, and we are lead to ask: for higher composites of a complex C with itself, what happens to the roots of their k-polynomials? We prove that they converge to the Julia set of kC(x), thereby associating with C a fractal. For 2-dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2019

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2018.11.015